Le LINEE DI TRASMISSIONE vengono impiegate per trasferire energia elettrica, o informazioni, da un generatore a un carico.

Un esempio di linea elettrica in corrente continua è indicato nell'animazione seguente, dove la  forza elettromotrice E di una pila, separa le cariche elettriche positive + da quelle negative - e, per mezzo di un tasto T, le immette  nei conduttori della linea.

Una volta arrivate sul carico, poi, per l'attrazione reciproca, queste si riuniscono, restituendo, tramite la lampadina, l'energia che il generatore aveva conferito loro.

Di solito, le linee elettriche a bassa frequenza, hanno lo scopo specifico di trasportare energia elettrica e, in Italia,  sono quelle dell’ENEL, che trasferiscono l’energia elettrica dalle centrali, dove viene prodotta, fino alle utenze, che sono ad esempio, gli appartamenti di civile abitazione dove noi viviamo.

La foto a destra mostra linee ad alta tensione in bassa frequenza (50 Hz)

Le linee elettriche a radiofrequenza, invece, di solito trasportano piuttosto informazioni, e sono ad esempio, la linea telefonica, il cavo dell’antenna televisiva,  il cavo dei baracchini,  delle radio radioamatoriali e così via.

In una linea, quando le cariche elettriche si mettono in movimento, costituendo così la corrente elettrica, il campo elettrico dovuto alla presenza delle cariche e il campo magnetico dovuto al loro movimento, si propagano con una velocità prossima a quella della luce.

La tensione e la corrente elettrica impresse dal generatore ad un estremo della linea non raggiungono il carico istantaneamente, ma si propagano lungo la linea arrivando al carico dopo un tempo che, anche se brevissimo, non è comunque nullo.

La velocità di propagazione del segnale dipende dal mezzo che circonda i conduttori e in cui si propagano il campo elettrico e il campo magnetico.

Per le linee isolate in aria la velocità si può considerare uguale a quella della luce nel vuoto (3 x 108 m/sec) mentre è un poco più  bassa per quelle con dielettrico diverso dall'aria (circa 2 x 108 m/sec).

Il tempo di propagazione è importante quando la linea è cosi lunga o la frequenza così alta che il segnale impiega una parte apprezzabile del ciclo o addirittura più cicli a percorrerla e quindi si determina una situazione del tutto sconosciuta nello studio delle linee a bassa frequenza, e cioè nello stesso istante la tensione e la corrente non sono le stesse nei vari punti della linea perché man mano che il segnale sinusoidale si va propagando lungo la linea, la sua fase va variando istante per istante a causa dell'alta frequenza, come indicato, in modo schematico, nella seguente animazione.

Da questa animazione si può vedere schematicamente come a seguito del continuo invertirsi della polarità del generatore E vengono inviate in linea, a velocità prossime a quelle della luce, alternativamente cariche elettriche positive + e cariche elettriche negative - che costituiscono un'onda di tensione          e di corrente (           e         )  che, partendo dal generatore, attraversano la linea fino ad essere totalmente assorbite dal carico Z0 al quale restituiscono l'energia elettrica che il generatore aveva dato loro.

In queste condizioni pertanto la linea, nella sua interezza, non può essere considerata come un solo elemento circuitale, come si fa nello studio delle linee a bassa frequenza ove veniva sostituita, nel suo modello matematico, da una sola impedenza concentrata in un solo punto da inserire in serie al circuito costituito dal generatore e dall'utilizzatore, va invece studiata con la teoria delle costanti distribuite, studio che si svolge con le equazioni differenziali dette dei: 

TELEGRAFISTI E DEI TELEFONISTI.

Quando la linea è molto più corta di un quarto di lunghezza d'onda, pertanto viene considerata a bassa frequenza e lo studio viene effettuato con le costanti concentrate, mentre se la sua lunghezza è eguale o maggiore di un quarto di lunghezza d'onda, la linea viene considerata ad alta frequenza e lo  studio si effettua con la teoria delle costanti distribuite.

Nelle linee di trasmissione a radiofrequenza pertanto, resistenza, induttanza, capacità e conduttanza sono da considerare distribuite uniformemente lungo  le linee stesse e sono dette costanti primarie delle linee.

La resistenza è quella presentata dai conduttori metallici al passaggio della corrente e si misura in W / m.

L'induttanza è dovuta al campo magnetico che circonda i conduttori percorsi dalla corrente e si misura in H / m.

La capacità è  dovuta alle superfici metalliche dei due conduttori e al dielettrico interposto e si misura in F / m.

La conduttanza tiene conto delle correnti di dispersione dovute all'imperfezione dell'isolante presente fra i conduttori e si misura in S / m.

Nell’analisi che segue per determinare le equazioni differenziali che legano tensione e corrente in ogni punto della linea supponiamo di esaminare inizialmente una porzione di linea dx molto più piccola di un quarto di lunghezza d’onda e tale quindi da potersi studiare con la teoria delle costanti concentrate.

 

Si supponga per semplicità, che il generatore di segnale sia di tipo sinusoidale e sia x la distanza della sezione generica della linea dal generatore.

Dall’esame del circuito, applicando i due principi di Kirchhoff, si ha:

e, dividendo membro a membro per dx:

Queste equazioni, dette dei Telegrafisti e dei Telefonisti, esprimono il legame esistente fra la tensione, la corrente, e le loro variazioni, lungo la linea in funzione delle costanti primarie  R, L, G, C,  della linea.

Le soluzioni delle equazioni dei telefonisti e dei telegrafisti sono:

In cui:  

assume il nome di costante di propagazione, e:

assume il nome di impedenza caratteristica.

Ambedue, poi, prendono il nome di costanti secondarie delle linee e sono, come si può osservare, dei numeri complessi

Inoltre essendo g un numero complesso, deve avere una parte reale a e una immaginaria b:

a è la parte reale,  indica di quanto si attenua il segnale ogni metro che avanza e si misura in Neper /metro, anche se la sua unità di misura più diffusa è il decibel/metro.

b invece è la parte immaginaria ed indica di quanto ruota la fase del segnale ogni metro che avanza e si misura quindi in radianti/ metro, anche se è pure misurata in gradi/metro.

Poiché la fase avanza di 2p radianti per ogni lunghezza d’onda l che avanza, essa risulta:

VELOCITA' DI PROPAGAZIONE

La velocità con cui si propagano queste onde è data per definizione dallo spazio percorso s diviso il tempo t impiegato a percorrerlo, e cioè:

ma, essendo l lo spazio percorso dall’onda nel tempo T in cui avviene un’oscillazione completa del segnale prodotto dal generatore, si ottiene, sostituendo:

ma poiché è:

risulta:

Moltiplicando numeratore e denominatore per 2p e ricordando che:

e:

 si ha:

La velocità così definita è chiamata velocità di propagazione dell’onda di tensione e di corrente lungo la linea, e anche velocità di fase poiché rappresenta la velocità con cui un osservatore deve spostarsi lungo la linea per vedere sempre la stessa fase dell’onda.

SIGNIFICATO DELLE COSTANTI  A , B

Per comprendere meglio il significato fisico delle soluzioni delle equazioni dei Telefonisti, è opportuno esaminare separatamente i termini a secondo membro delle due espressioni.

I primi termini:

e:

rappresentano un’onda di tensione e di corrente incidente che partendo dal generatore attraversa la linea fino  a giungere sul carico.

I secondi termini:

e:

rappresentano un’onda di tensione e di corrente riflessa, che partendo dal carico attraversa la linea fino a giungere sul generatore.

Esaminiamo adesso attentamente la formula matematica che rappresenta l’onda incidente di tensione:

Essendo x la distanza generica dall’inizio della linea, ponendo in questa formula x = 0, si ottiene la tensione dovuta all’onda incidente all’inizio della linea:

Analogamente si può dire che la corrente all’inizio della linea dovuta all’onda incidente è:

Il termine B invece rappresenta la tensione all’inizio della linea dovuta all’onda riflessa ed il termine B/Z0  la corrente all’inizio della linea dovuta all’onda riflessa.

La tensione dovuta all’onda incidente in un punto qualsiasi della linea è:

 

Da questa formula in modo più evidente si capisce che l’onda incidente, sia essa di tensione che di corrente, mentre si propaga, si va attenuando secondo la funzione esponenziale negativa reale:

mentre contemporaneamente la sua fase va ruotando secondo la funzione complessa:

a infatti, che si chiama costante di attenuazione, indica di quanto l’onda si va attenuando ogni metro che avanza, mentre b, che si chiama costante di fase, indica di quanto va ruotando la sua fase ogni metro che avanza.

DETERMINAZIONE DI A

Per determinare il valore di A,  si consideri che, nel caso di linea infinita, il generatore trasmette le due sole onde incidenti di tensione e di corrente che stanno tra loro nel rapporto Z0.

Il generatore quindi vede come suo carico immediato, nell’attesa di un’eventuale onda riflessa, un’impedenza uguale a Z0 per cui lo schema equivalente cui fare riferimento nel caso del transitorio iniziale, per determinare A è il seguente:

Da questo risulta:

 

LINEE SENZA PERDITE

E’ molto interessante studiare il caso, teoricamente impossibile, ma praticamente spesso approssimabile, delle linee senza perdite, in quanto in questo caso, alcune delle formule fin qui studiate, assumono una forma molto più semplice:

 FATTORE DI VELOCITA’

Dalle equazioni di Maxwell risulta per la velocità:

essendo:

si ha:

ma essendo praticamente sempre:

in quanto i cavi per alta frequenza non sono quasi mai costituiti da materiali ferromagnetici, si ha:

Essendo la costante dielettrica relativa er  sempre maggiore di uno, risulta, come era d’altronde logico prevedere, che la velocità v dell’onda nel dielettrico è inferiore a quelle della luce nel vuoto.

L’espressione:

assume il nome di fattore di velocità ed un suo valore tipico, relativo ai cavi di uso comune nelle linee a radiofrequenza è di 0,66.

In caso di linee aeree, cioè con dielettrico aria, essendo er = 1, risulta:  v = c.

Quindi in una linea aerea la velocità di propagazione del segnale elettromagnetico, coincide con la velocità di propagazione della luce nel vuoto.

Se la linea non è infinita, ma è chiusa su di un carico qualunque, il segnale, giungendo al termine della linea, subisce una riflessione in corrispondenza del carico.

ONDE STAZIONARIE

Lungo la linea si stabilisce allora un regime di onde stazionarie dovuto al sovrapporsi di due onde, quella incidente, e quella riflessa che si propagano in versi opposti.

Si vengono a determinare quindi, dei punti, detti ventri, nei quali le onde incidenti e le onde riflesse si vengono a incontrare restando sempre in fase ed ivi la tensione totale è massima, e degli altri punti, detti nodi, dove le due onde si vengono a incontrare sempre in opposizione di fase determinando dei minimi di tensione totale, come si vede, schematicamente, dall'animazione seguente.

 

Se però la linea è adattata, cioè se l’impedenza del carico coincide con l’impedenza caratteristica della linea, allora la riflessione non si verifica e la linea funziona a regime progressivo e non più stazionario.

In tal caso le onde emesse dal generatore non tornano più verso di esso perché vengono assorbite dal carico ove si trasformano in energia di altra forma, ovvero vengono irradiate nello spazio sotto forma di onde elettromagnetiche se il carico è un’antenna.

In questo caso il termine  B  è uguale a zero mancando così l’onda riflessa di tensione e di corrente.

Si osservi che il rapporto fra l’onda incidente di tensione (Volt) e l’onda incidente di corrente (Ampere) è sempre uguale a Z0 (Ohm).

Analogamente avviene per l’onda riflessa di tensione e di corrente che hanno come rapporto Z0.

Per quanto riguarda il segno - degli esponenziali della tensione e della corrente incidente, si osservi che esso è conseguenza del sistema di riferimento usato.

Usando invece il carico come origine del sistema di riferimento, il segno -  si cambia in  +  e quella che era prima onda riflessa, viene vista ora dal carico come onda incidente dal carico verso il generatore, sua nuova destinazione.

Per una linea chiusa su un carico  ZL   diverso da  Z0  la costante B dell’equazione dei Telefonisti è diversa da zero.

In pratica spesso è molto più utile misurare le distanze lungo la linea a partire dal carico anziché a partire dal generatore perché spesso si deve adattare il carico con uno STUB da inserire a breve distanza dal carico stesso.

La tensione  V(x)  e la corrente  I(x)  lungo la linea, allora, misurate a partire dal carico, risultano:

Qui VL+ rappresenta la tensione incidente misurata sul carico e VL- rappresenta la tensione riflessa misurata sul carico.

Queste due grandezze risultano correlate dal coefficiente di riflessione r:

che è in generale un numero complesso il cui modulo può variare tra zero ed uno ed indica il rapporto tra la tensione riflessa e quella incidente.

Il coefficiente di riflessione  r  è funzione dell’impedenza di carico  ZL  e dell’impedenza caratteristica della linea  Z0  secondo l’espressione:

Dalla precedente formula risulta che in caso di linea adattata cioè con  ZL = Z0 , il coefficiente di riflessione  r è nullo e non si hanno onde riflesse.

Come si è visto, in caso di linea adattata, quando, cioè non vi è riflessione sul carico, le ampiezze della tensione e della corrente diminuiscono esponenzialmente lungo la linea dal generatore verso il carico.

Invece, quando vi è onda riflessa, le ampiezze della tensione e della corrente, oltre a diminuire esponenzialmente, variano periodicamente lungo la linea a causa dell’interferenza fra onda incidente ed onda riflessa determinando così l’onda stazionaria.

L’onda progressiva, nelle linee senza perdite è una sinusoide, mentre nelle linee con perdite è una sinusoide smorzata che si propaga a velocità prossima a quella della luce dal generatore verso il carico.

L’onda stazionaria invece non si propaga, ma è una curva che fornisce i valori massimi della tensione nei vari punti della linea, e quindi è fissa come posizione, ma pulsa in ampiezza nel tempo fra un massimo positivo e un minimo negativo.

C'è un'onda stazionaria di tensione, e anche di corrente.

Ambedue hanno esattamente la stessa forma, solo che sono sfasate fra loro di l/4, cioè ad un ventre di tensione dell’una corrisponde un nodo di corrente dell’altra e viceversa.

Nel caso di linea senza perdite adattata, il diagramma d’onda stazionaria è costituito da un segmento rettilineo, in quanto, mancando la riflessione, si ha solo l’onda incidente, che in ogni punto della linea ha lo stesso valore massimo.

Nel caso di linea con terminazione aperta o in corto circuito, il coefficiente di riflessione assume il valore di 1 in quanto l’onda riflessa coincide con tutta l’onda incidente e, se la linea è senza perdite, i ventri di tensione hanno valore doppio della tensione massima incidente, mentre i nodi di tensione sono uguali a 0.

La distanza fra due nodi o fra due ventri in ogni onda stazionaria è sempre uguale a l/2, mentre la distanza fra un ventre ed un nodo è sempre l/4 

ROS     ovvero     VSWR

Il rapporto fra il valore massimo ed il valore minimo della tensione di un’onda stazionaria si chiama ROS (Rapporto d’Onda Stazionaria) ovvero SWR (in inglese: Standing Wave Ratio):

Il ROS ed il coefficiente di riflessione r  sono legati dalla relazione:

La relazione inversa è:

Il valore del ROS può variare fra 1 e al variare ditra 0 e 1.

Per una linea adattata, il ROS è uguale a 1, mentre nel caso di una linea chiusa in corto circuito od aperta o con carico puramente reattivo, è .

IMPEDENZA DI INGRESSO DI UNA LINEA

L’impedenza in un punto qualsiasi della linea è definita come il rapporto fra la tensione e la corrente in quel punto della linea, intendendo naturalmente come tensione, la tensione totale, cioè la somma della tensione incidente più quella riflessa e come corrente, la corrente totale.

Infatti uno strumento di misura come il voltmetro, non è in grado di distinguere se le cariche elettriche che determinano quella tensione in quel punto siano venute da destra o da sinistra.

  L’impedenza allora, per quanto detto si ricava dalla formula:

Per una linea senza perdite, essendo in questo caso:   a = 0,   e quindi:   g = jb , e ricordando che:

  risulta, dopo molti passaggi che per semplicità non si riportano:

LINEA SENZA PERDITE IN CORTO CIRCUITO

In questo caso, essendo  ZL = 0, l’espressione scritta sopra diventa:

L’impedenza in ogni punto della linea è una reattanza pura che varia secondo

Se la linea ha lunghezza compresa tra zero ed un quarto di lunghezza d’onda, la sua impedenza di ingresso è una reattanza positiva, cioè induttiva, mentre se la lunghezza è compresa fra un quarto di lunghezza d’onda e mezza lunghezza d’onda, l’impedenza di ingresso è una reattanza negativa, cioè capacitiva.


LINEA SENZA PERDITE APERTA

 In presenza di linea aperta, essendo    

l’impedenza di ingresso diventa:

In questo caso l’impedenza è una reattanza pura e il comportamento della linea rispetto al caso precedente è duale in quanto varia come:

Se la linea ha lunghezza minore di un quarto di lunghezza d’onda, la sua impedenza di ingresso è una reattanza capacitiva, mentre se la sua lunghezza è compresa fra un quarto di lunghezza d’onda e mezza lunghezza d’onda la linea ha comportamento induttivo.

ADATTAMENTO DELLE LINEE

Il disadattamento di una linea a radiofrequenza può comportare parecchi inconvenienti.

Se il segnale prodotto dal generatore,  viene in parte riflesso dal carico, una parte della potenza sviluppata gli ritorna indietro sovraccaricandolo, ed eventualmente distruggendolo, se non è stato dimensionato per sopportare questa nuova potenza che si trasforma in calore.

Il caso peggiore si ha ovviamente nel caso del massimo disadattamento che si manifesta con il carico in corto circuito o a circuito aperto.

Un trasmettitore, pertanto, non deve mai essere cortocircuitato ai piedi dell’antenna, ma neanche deve essere staccata l’antenna mentre sta trasmettendo.

Lo stesso pericolo corre, a bassa frequenza, un amplificatore stereo se si staccano le casse mentre sta suonando.

Inoltre un disadattamento d’antenna comporta, in ogni caso, una minore potenza trasmessa, e quindi una minore portata del trasmettitore.

Quindi, ferma restando la potenza sviluppata dal generatore a radio frequenza, la portata del trasmettitore viene drasticamente ridotta da un ROS  troppo alto.

Si tollera un ROS di 1,2 – 1,5  ma  mai valori superiori.

Visti gli inconvenienti presentati dal disadattamento, si cercano delle tecniche per ridurre, correggere o eliminare il disadattamento tra linea e carico.

Si può adattare un carico di tipo resistivo ad una linea inserendo un breve tratto di linea a l/4 secondo lo schema di figura con:

Si può realizzare l’adattamento nel caso di carico costituito da resistenza e reattanza con uno STUB, cioè un tratto di linea, dello stesso tipo di quella principale, ma collocata in parallelo al carico in modo da eliminare la parte reattiva dell’impedenza e riducendola al valore resistivo della resistenza caratteristica R0  della linea principale con l’aggiunta della linea a l/4.

I relativi calcoli si effettuano con la carta di SMITH oppure secondo quanto indicato nell'esercizio n.8 della pagina esercizi della home page.